Tetromino: Difference between revisions

From TetrisWiki
Jump to navigation Jump to search
*>Tepples
→‎''O'': pfrowify (I'll do the rest all at once)
*>Tepples
finish pfrow
Line 4: Line 4:
{{pfstart}}
{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |i|i|i|i| | | }}
{{pfrow | | | |i|i|i|i| | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |g|g|g|g| | | }}
{{pfrow | | | |g|g|g|g| | | }}
{{pfend}}
{{pfend}}


Line 27: Line 27:


==''T''==
==''T''==
{| align="left" style="padding-right:20px;"
{{pfstart}}
|{{pos|=
{{pfrow | | | | |t| | | | | }}
| | | | |t| | | | | |=
{{pfrow | | | |t|t|t| | | | }}
| | | |t|t|t| | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | |g| | | | | }}
| | | | | | | | | | |=
{{pfrow | | | |g|g|g| | | | }}
| | | | | | | | | | |=
{{pfend}}
| | | | | | | | | | |=
 
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | |g| | | | | |=
| | | |g|g|g| | | | |=
}}
|}
<br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />
==''S''==
==''S''==
Other names include ''inverse skew''.
Other names include ''inverse skew''.
{| align="left" style="padding-right:20px;"
{{pfstart}}
|{{pos|=
{{pfrow | | | | |s|s| | | | }}
| | | | |s|s| | | | |=
{{pfrow | | | |s|s| | | | | }}
| | | |s|s| | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | |g|g| | | | }}
| | | | | | | | | | |=
{{pfrow | | | |g|g| | | | | }}
| | | | | | | | | | |=
{{pfend}}
| | | | | | | | | | |=
 
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | |g|g| | | | |=
| | | |g|g| | | | | |=
}}
|}
<br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />
==''Z''==
==''Z''==
Other names include ''skew''.
Other names include ''skew''.
{| align="left" style="padding-right:20px;"
{{pfstart}}
|{{pos|=
{{pfrow | | | |z|z| | | | | }}
| | | |z|z| | | | | |=
{{pfrow | | | | |z|z| | | | }}
| | | | |z|z| | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | |g|g| | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | |g|g| | | | }}
| | | | | | | | | | |=
{{pfend}}
| | | | | | | | | | |=
 
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | |g|g| | | | | |=
| | | | |g|g| | | | |=
}}
|}
<br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />
==''J''==
==''J''==
Other names include ''gamma'' or ''inverse L''.
Other names include ''gamma'' or ''inverse L''.
{| align="left" style="padding-right:20px;"
{{pfstart}}
|{{pos|=
{{pfrow | | | |j| | | | | | }}
| | | |j| | | | | | |=
{{pfrow | | | |j|j|j| | | | }}
| | | |j|j|j| | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | |g| | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | |g|g|g| | | | }}
| | | | | | | | | | |=
{{pfend}}
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | |g| | | | | | |=
| | | |g|g|g| | | | |=
}}
|}
<br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />


==''L''==
==''L''==
{| align="left" style="padding-right:20px;"
{{pfstart}}
|{{pos|=
{{pfrow | | | | | |l| | | | }}
| | | | | |l| | | | |=
{{pfrow | | | |l|l|l| | | | }}
| | | |l|l|l| | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | | | | | | }}
| | | | | | | | | | |=
{{pfrow | | | | | |g| | | | }}
| | | | | | | | | | |=
{{pfrow | | | |g|g|g| | | | }}
| | | | | | | | | | |=
{{pfend}}
| | | | | | | | | | |=
 
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | | | | | | |=
| | | | | |g| | | | |=
| | | |g|g|g| | | | |=
}}
|}
<br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />
==See also==
==See also==
*[[Topics]]
*[[Topics]]
Line 175: Line 94:
==External links==
==External links==
*[http://mathworld.wolfram.com/Tetromino.html Mathworld]
*[http://mathworld.wolfram.com/Tetromino.html Mathworld]
*[http://www.arkmay.com/tetris/pieces.html The Tetris Taxonomy: The Pieces] (PG-13)

Revision as of 02:58, 29 May 2006

A tetromino, sometimes called tetramino or tetrimino, is a four-squared polyomino. The seven tetrominoes are I, O, T, S, Z, J, and L.

I

Other names include straight, stick, and long. This is the only tetromino that can make a "tetris" (four lines with one tetromino) outside of cascade games.

iiii
gggg

O

Other names include square and block.

oo
oo
gg
gg

T

t
ttt
g
ggg

S

Other names include inverse skew.

ss
ss
gg
gg

Z

Other names include skew.

zz
zz
gg
gg

J

Other names include gamma or inverse L.

j
jjj
g
ggg

L

l
lll
g
ggg

See also

External links